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A METHOD FOR SOLVING THE INVERSE PROBLEM OF TRANSONIC CASCADE
FLOW

Cong Zengjing

Computing Center, Academia Sinica

Zou Zixiang

Institute of Engineering Thermophysics, Academia Sinica

Abstract

This paper presents a method for solving the inverse problem of transonic cascade
flow in (#,q ) coordinate system. Given the upstream aid downstream conditions and
the velocity distribution on cascade, the flow field is obtained by solving the full potential
equation with velocity as the unknown with the line relaxation method. Subsequently,
the field is transformed back into the physical plane and we obtain the profile coordinates.
Thickness and deflection are not restricted, since the full potential equation is used. The
numerical result of the inverse problem for the Hobson cascade flow by the above method
shows the applicability and fast convergence of our method.

I. Preface

In the last ten years, many numerical methods have appeated

for the analysis of transonic cascade flow such as those by

Denton [1,81, MacCormack (21, FLIC (3] etc. It is necessary to

obtain the velocity distribution on the blade surface for given

cascade configuration and inlet and outlet conditions. However,

the calculation time of this method is too long and moreover,

when there are small blade surface configuration corrections near

the adjacent velocity line, this can cause tremendous changes of

the blade surface velocity. Therefore, to obtain a cascade with

rational velocity distribution, it is necessary to carry out

a great deal of molding and calculations.
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One suitable method for designing a cascade with low loss

[4] begins with the rationality of the velocity distribution

and as regards the configuration of the cascade, for the velocity

distribution of the cascade, the experiences have been voluminous

(mainly research on the boundary layer) and for the velocity

distribution and the inlet and outlet conditions of a given

cascade, they find the configuration of the blade surface.

This then composes the so-called inverse problem of cascade flow.

It is well known that when solving the mixed potential flow

equation using the potential function as the unknown quantity,

there are two problems worthy of attention. One is finding the

hyperbolic point and the elliptic point positions in the solution

range which are unknown and irregular. If the calculation mode

used is not suitable this will produce calculation instability.

The other problem worthy of attention is the use of the physical

boundary condition 4PN=0 is not convenient especially the

problem of the substance surface's form being too complex.

The reason is the grid lines included in the substance surface - .

are often nonorthogonal.

In 1971, Murman and Cole [5] first pointed out that the

"type correlation form" caused research on the transonic

potential flow problem to make considerable progress yet it is

only limited to small perturbation equations. When the flow

direction and grid line direction are different, the negative

artificial viscosity possibly produced in the supersonic region -- ,

causes the calculations to be unstable. In 1974, Jameson [6]

pointed out that the "rotation finite difference form" eliminated

the limitation of the small perturbation. However, the problem

of how to correctly use the substance surface's boundary condition

4n=0 is to date still difficult to process. When the wing or

cascade thickness is very thin, On-0 and we can approximately
substitute with y& 0. In reality, this further adds to the

limitation of the small perturbation.

2

. -- " - - * * . . " "~ -- " -. . . .-.. _ - l -- _ .. . _ : _ _ . . ._ . .L



This paper uses velocity q as the unknown quantity, finds

solution in the ( 9 , V ) coordinate system (similar to [4]) and

readily solves the above two problems. Because the upper and

lower sides of the grid here are flow lines themselves, it does

not require structural rotation form. Moreover, because the

grid is rectangular on the ( Y P ) calculation plane, this is
advantageous for structuring the implicit form advanced along

the flow line. At the same time, the orthogonality of the

explicit grid naturally satisfies the impermeable conditions of

the solid wall boundary.

Symbols

aLj: critical velocity

s : arc length along flow line

n : arc length along potential line

: flow function

A' : inlet and outlet angle

r : specific heat ratio

: circulation
w : velocity

q : w/aL]

: density

potential function

O : local flow angle

t cascade distance

Lower Symbols

"1,2": inlet and outlet parameters

"0" : stagnation parameter

II. Fundamental Equations

Assuming the flow satisfies the continuity conditions, flow

3



function can be defined as

d4v pat-do

Assuming the flow satisfies the non-rotational conditions,

potential function P can be defined as

dy- wds

Because the dn along the flow line is zero, when the

definition of II is known, is constant. The ds along the

velocity potential line (vertical to the flow line) is zero and

when the definition of 4 is known, T is constant. m

Naturally, the following relational formulas exist:

ds - cosds - ( cosOw)dq),

dy - ,"Od,s-( 81/)dp, (2.1)

dx - - d, - (- d9/pw)d#,

dy -,=,. - (wO/op,)d#. (21)

Considering the two-dimensional, non-rotational and constant

compressible flows

0 (2.3)

8 (wd,) - 0. (2.4)

Further, based on considerations of geometric attributes

(see Fig. 1), we have

a o) _ o (2.5)
8, as 8

a , -_A_ (2.6)

8, an

Based on formulas (2.3), (2.4), (2.5) and (2.6), we obtain

the following set of differential equations: _

4
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(2.7)

,,. , - 0. (2.8)

From (2.7) and (2.8), we obtain the logarithmic

differential equation

(inp),, + (In,),, - ((Onp),)' - (1np),.(am), + p(np),O a1,).
+ P2(n w)* - 0. (2.9)

We introduce the isentropic relationship

( ,/p)- ,- -$q~r) .(2.10) .

Dimensionless factors P 0 aLj and t are used to make

formulas (2.9) and (2.10) dimensionless. The entire potential

equation on the calculation plane ( )w_ W coordinate system)
can be written as

.(I.q), + C(-nq). + ,,[(,nq). + c,[(1-q)., - 0. (2.11)

j Formula (2.10) changes into

,- ,-7 € ,(2.12)

In the formula, c =(l-q 2 )/k(r+l)(r-l) c2=l

-2 e
-L( + +3 I 3~" 14 Z~L

"-.

We can see that the local subsonic and supersonic regions of

the flow separately corresond to the elliptical and hyperbolic

regions.

521.
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Fig. 1 Geometric relationship under ( Y- ) grid.

III. Boundary Conditions

The boundary conditions of the solution region shown in

Fig. 2 are given as follows:

Inlet: ql' #1; outlet: q2' (62); blade surface: qp, qs

In this, ( is the reference value.

Letting Q=( p 2q2sin ) lqlsin 6 1 ,f we consider that

the boundary layer causes the main flow region of the wake flow

section and can select Q > 1 so that the wake flow section is

not sealed.

From the continuous equations and isentropic conditions,

we can calculate

)

f+

6q,--,f-)

.:. . ''.
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Fig. 2 Solution region and boundary conditions.

Naturally, when Q gives j 2 ' we can calculate from q1 '
and q2 "

a
AS 1 and As 2 on the pressure boundary flow line are

calculated as follows:

- -,.L. ,

d, - sinA d, sin'

Circulation r along the cascade profile is calculated g

based on strict periodic conditions

r t(q , - qcosjt)"

If under design conditions, it is permissable to have a t.

supersonic region. The necessity to thus select the velocity

distribution causes it to further compress the isentropy.

The final shock wave strength will be weakened and thus avoid

the separation of the boundary layer. .

It is only necessary that the boundary layer not have

separation to be able to use the cascade velocity distribution

with the largest pressure gradient.

7
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The velocity distribution in this paper is given along

the flow line isopotential.

IV. The Discete Technique

When there is discretization, there is central difference

with second-order precision along the )1 direction. However,

along the T direction, we then use the "type correlation"

form.

The elliptic point:

(in q)"Ig -'!I) - 21aqij + I .nq, ,j

The hyperbolic point: the finite difference forms of first-

order and second-order precision are separately:

()n(q),lqi - 21nqj-,, + 1nq. 1,I_,] '

(Inq),,jjj - [21nq - 5lnq,-,. + 41-q,_,, - l-qi,.I.

In order to avoid processing the set of nonlinear equations,

the value of the (n+l) layer only appears in the i line, on the

unknown quantity (Inq) obtained after using the second-order

difference quotient.

Finally, we obtain a set of finite difference equations

which assume the form of three opposite angles

A,4)(n -- 1) + B 71)(1nq)1 -- + e (lnq),-, VDe' (4.1)

Coefficient A!n ) etc. are calculated as follows

°°. . . . . . . . -

• °j
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- -2-.,(,,) 3 + H[ -2c,"(j(Ag,)] + (1 + H)[H,

+ 2(1 -H,),-'/(A )3,

, - -- [( - In qi-,,) /(2A,) ]'

- H. [(In ,..,- + 1n , /(2,i,)a - H' lq,+,., + Inq,-_,..)'"/(.Ac,)'

+ (I - ){H[(2,-q,_. - q_.)

+ (I - HI)[(5nq,,., - 4 q_,.j + nq,_,.,)1j},

H- (l) ,< 1,
-0, q>1.

Key: (1) When.

When H =1, formula (1) has first-order precision (the q

direction) and when HI=0, formula (4) has second-order precision.

We use the method of pursuit to solve the set of finite

difference equations based on the following steps:

For a fixed i, we select the number from 2 to I-i and

carry out

9
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I.-E- ) ? F-- ,)f(B/7 (°4. ,, E- ,. -,- 1

2. (inq):, - Ei ' i. ,,., , -k- 1k -2.

am (1)

(2)

BXE*J(3)

(*jjtvFr.f.. lVW2 (4)

45)
jn+-k I S (I00l14

ainql (l,,"X Ol ,"l ( 6)

L. (7)

it~~ 2,.1-'.). (2m .,) 8 IV]

(il,,ilFtill~,)(9)'

Key: (1) Flow chart; (2) Input; (3) Revised velocity
distribution; (4) Investigated circulation
if not suitable then change to 2; A5) Send;
(6) From method of pursuit use Inq to calulate

(Inq)n+l ; (7) Use q to calculate i along middle
flow line based on formula (2.7) and calculate
t8 aloneq T direction based on formula (2.8);
(8) Use q, & to calculate x, y based on formulas
(2.1) and (2.2); (9) Print x,y and if not suitable
then change to 2.

After the calculation of the entire field, we then further

relax

S(jq)*+ "Onq)( ') + (1

In this, relaxation factor a-E [0,21.

The total calculation procedure is shown in the flow chart.

3.0,



V. Conclusion

Firstly, based on the positive problem solved in Reference

[7], we obtained the velocity distribution on the Hobson cascade

blade surface and afterwards used the method proposed in this

paper to sove the inverse problem. After 23 iterations, the

maximum value of the entire field's absolute value of error

8(0q) decreased to 0.0002 and we obtained the profile shown

in Fig. 3. The symmetry accords quite well.

Fig.~ ~ ~ 3 Caclt Hosnpoie

U /

C.. ..
S 8•

AIAA", Pae No 7214 192

% S aS -

P" ;

Fig. 3 Calculate Hobson profile.
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